Configuring Firewalls
An XML-based Approach to Modelling and Implementing Firewall
Configurations

Simon R. Chudley and Ulrich Ultes-Nitsche
Department of Electronics and Computer Science, University of Southampton, Southampton,
S017 1BJ, United Kingdom, e-mail: {src299,uun}@ecs.soton.ac.uk

Keywords: XML-based modelling of afirewall, automatic configuration generation

Abstract: We present in this paper an approach for modelling the security infrastructure
of anetwork using XML. The modelled system can then be validated on the
XML level. From validated models, configurations of concrete nodes, such as
firewalls, can be generated automatically.

1. INTRODUCTION

Modern networking infrastructures often involve complex interactions
between participating network nodes and running services. It is often the
case that systems feature nodes running varying implementation of the same
service. However, these sub-systems still provide similar abstracted
functionaity to end-users, leading to problems in the configuration and
management of the overall system.

This paper proposes a solution to the management of a communications
infrastructure involving varying nodes and service implementations.
Considering in particular the service of a firewdl, it will introduce the idea
of an XML-based tool to alow firewall descriptions to be generated and
manipulated, whilst keeping the specification of the firewall as abstracted as
possible The toadl is then able to perform a level of translation to compile the
abstracted description down to implementation-level configuration files.
These can then be applied directly to the firewall running on a network node.
In addition, this gives rise to simulate any given firewall configuration prior
to itsimplementation to vaidate its configuration.

1

2 Smon R. Chudley and Ulrich Ultes-Nitsche

Taking the firewals IPFW [5] and IPFilter [3] as an example,
configuration differs between them, even though the required behaviour is
the same. The following two configuration scripts both give the same
functionality, to prevent packets from private networks coming in via their
public network interface, t unO, as described in RFC 1918 [7].

Example IPFilter configuration:

bl ock in quick on tun0 from 192. 168. 0.0/ 16 to any

bl ock in quick on tun0 from172.16.0.0/12 to any

bl ock in quick on tun0 from10.0.0.0/8 to any

pass in al

Example IPFW configuration:

add deny all from 192.168.0.0/16 to any in recv tun0O

add deny all from 172.16.0.0/12 to any in recv tunO

add deny all from10.0.0.0/8 to any in recv tunO

add pass all fromany to any

These two configurations differ purey on format; hence they could be
automatically generated from an abstracted description. However, this may
not always be the case as rule descriptions in IPFW and IPFilter differ dso
in functionality. Both the specification of generic firewall concepts as wdll
as handling settings available in one firewall but not another will be
addressed in this paper.

2. RELATED WORK

The Filter Compiler Language project [6] has successfully implemented a
conversion process from a set description to various firewall configurations.
The approach taken uses the C pre-processor to execute the conversions.
This alows the abstracted description to be generated using i f statements,
and variable mappings to be made. An example of thisis as follows.

if (in) then {
set protocol tcp
if (fromhost BAR and opening) then {
bl ock

if (fromfoo and to host bar) then {
| og body and bl ock

}
if (to port 2049) then {

| og and bl ock

pass .

Configuring Firewalls 3

However, on closer examination, this approach would not be applicable
to a wide range of services, as it relies on the fact that the configurations are
rule based. Also, as one aim of this project is to introduce the possibility of
simulation, such a service description would not be rich enough.

Another product was identified called the Firewall Builder [4]. This uses
a similar approach to that proposed by this project, where nodes and other
network elements are described using XML descriptions, and a GUI editor is
used to configure the firewall. Such an approach includes al processing
functionaity within the GUI editor, and the XML files purdy used as
storage for the system. This project aims to introduce more advanced
dynamic configuration operations into the XML definitions themse ves.

In addition, the Firewall-Builder method is still specific to a single
service, but will be useful as a comparison during the development of the
firewall service. This project aso aims to cregte an architecture using Java
and XML, to ensurethat it remains as system independent as possible.

3. THE SYSTEM

The key component to this system is the repository of network nodes and
service descriptions. These represent abstracted behaviour of the various
network dements and provide extended functionality to aid in the overall
configuration task, eg. referencing service behaviour defined within an
external library enables complete descriptions to be built up by reusing
previously tested and verified constructs. Function calls, in addition, can be
used to evaluate abstracted service descriptions, in order to automatically
configure dements of services running on the same or other nodes.

Taking the firewall example, we aim to initialy analyse how the service
responds to sequences of IP packets of varying forms. Furthering this, the
ability to track whole sessions across the smulated system is desired, hence
locating the nodes that may prevent such communication from taking place.
Common network threets to enterprise security could be emulated within the
simulation process, establishing the extra firewall rules, for example that
may be required to protect againgt such vulnerabilities.

Once the desired behaviour of the abstracted service descriptions has
been achieved via the simulation process, the next task is to translate these
into configuration files that can be directly applied to applications running
on nodes. This is a two-stage process, featuring an initia verification step,
then the translation itsdf. During verification the aim is to establish whether
there are any restrictions in the translation process, such as the use of
features not supported by the chosen end leve firewall system. Post
verification, possibly after making configuration changes due to identified

4 Smon R. Chudley and Ulrich Ultes-Nitsche

restrictions, the translation process executes. With a rich enough translation
process, generating rules for two differing firewall implementation will ill
give us the overall behaviour we expected.

3.1 Overall Structure of System

One primary am of this project was to provide an architecture that
could genericaly be applied over a wide service base. It should be
able to transparently support the addition of new trandations from the
abstracted description to implementation level configurations, and
expand easily to cover new services.

The most versatile approach to use is a fully object oriented design. A
major aspect of the entities responsibilities is to parse and generate the
XML to represent themsdves, being able to expand variable mappings and
function calls for example. The idea is to maintain maximum encapsulation
within the service objects, so that new services can be added by the
ateration of the minima number of externd objects.

The diagram on the following page figure 1, shows the overd! system
structure and processes that occur. Initialy, the user’s task is to generate
descriptions of their network (stage 1), the nodes within it and the services
they intend to configure. At this stage al descriptions use an abstracted
syntax, implying that their specification is not tied to a single service
implementation or architecture.

At stage 2 within the diagram, the system will maintain an XML
abstracted description of all eements. Such syntax is used to maintain state;
hence these descriptions can be stored and recaled from disk. This stage
forms the central repository of the entire system, with other stages referring
to it when performing further processing. XML service descriptions will
contain unresolved externa references and function cals, as these are
evaluated prior to transl ation/simul ation.

With the desired behaviour of the nodes and services encapsulated within
abstracted XML descriptions, simulation can be performed to vaidate
specifications prior to implementation. Simulation is outside the scope of
this project, but research is in place to develop such atool. It is envisioned
that feedback criteria such as performance and security improvements will
be fed back to the system editor, alowing the user to incorporate these new
rulesinto their overall specifications.

Configuring Firewalls 5

@ Modifications to remove

System restricted elements
Editor ‘ﬁ\\
®

Feedback from Simulation

Performance &
Security

Improvements AN Seneruiial &
P Exporting Object Data Identify
Structur
THERR Restriction Problems

@I Vali%

Simulation . - XML Abstracted

E Translation
Descrlptlon XML & X5L
System
@ Analysis @
Integration of
XML Specifications Low Level
® Configs

Generic Description of Enterprise
Complete System Description

Figure 1. Overview of the System Structure

Stages 4 and 5 represent the process of creating implementation level
configuration files from the descriptions now stored in stage 2, hence
outputting files that can be directly loaded into service gpplications. Initialy
a leve of restriction validation is performed. This takes a set of restriction
filter rules, describing possible problems in the translation process, and
reports to the user the location of such restrictions, and the XML eements
they affect. Such a filter is required as different service solutions provide
different functionality, and the user should be notified of any undesired
changes in behaviour. As with simulation, the system editor will be used to
make design changes in response to | ocated restrictions.

Trandation, in stage 5, ams to convert these descriptions to
implementation level configuration files. At this stage, the user will be aware
of the expected behaviour of the to-be implemented services, and have
knowledge of any included restrictions. Finaly, stage 6 represents the
enterprise description, implying that the combination of all dement
specifications define the overall abstracted behaviour of the entire system.

6 Smon R. Chudley and Ulrich Ultes-Nitsche

4, SERVICE TRANSLATION PROCESS
41 Specifying the Trandation

Tranglation is the process of converting the abstracted service description
into rules and configuration elements that can be directly applied to the
desired service implementation. The process used to achieve this is XSLT
using XSL style sheets [8]. For each implementation, such as IPFilter or
IPFW for firewalls, an XSL sheet is created to perform the transformetion to
the end level rules. An XML file of the same name is used to act as a
wrapper, providing extra functionality such as detailing limitations of the
trandlation, described in the next section.

The aim is to cregte a rich enough translation between the abstracted
description and the final configurations, so tha the behaviour directly
reflects that of the original XML specification. If this could be achieved, a
node could in fact be swapped with one running a different implementation
of a given service. Generating the configurations for this new node should
give the same functionality as before, enabling services to be swapped for
performance, security and testing reasons.

4.2 Translation Restriction Calculation
42.1 Overview of Restrictions

Due to the leve of abstraction introduced in describing the behaviour of
network services, there is commonly a mismatch between the two leves of
configuration. Features supported by the XML description may translate
directly into one implementation level service but not another, which implies
that the overall behaviour of the system will not be as the user expected.
However, this section describes a process that enables the user to test
whether there will be any problems in the translation process. In addition it
reports to the user information on the XML dements of their configuration
that are restricted, along with textual reasoning.

Such restrictions can only be identified with knowledge of the specific
target implementation language, al details of which are stored within the
trandation XSL file itsdf. Therefore, in addition to the XSL file, each
translation also contains an XML file describing a set of restrictions of that
process.

Restrictions are described as mepping a combination of XML
configuration elements to some text reason explaining why they are not
supported. These will be specified by the creator of the translation, and can

Configuring Firewalls 7

contain multiple rules that an XML eement must match to be declared as a
restriction.

Restriction caculation is performed using a pre-processing style. The full
XML output of the service is fed into the pre-processor, specifying which
translation we desire to test for restrictions. The pre-processor itsdf isin fact
a seria processing XML filter, using a set of predefined rules (specified as
restrictions) to analyse the stream of XML as it passes. Elements that match
the rules will be returned to the user, along with the text reason for that
restriction matching.

The restriction filter provides a rich syntax for matching XML
configuration dements, with the intent of being able to specify any
restrictions that may occur. The basic element of a restriction maps from the
status of an attribute or dement to a text reason that is outputted on the
match of such an attribute. However, combinations of these can be made and
put into groups forming logical operations such as AND/OR. Further groups
can be created consisting of other groups and sub-dements alowing
compl ex node configurations to be matched.

422 Restriction Rule Specification

The following restriction segment shows matching on the existence of a
sub-element of XML. This will therefore match any Rul es that have one or
more pr ot ocol sub-eements within them. A specific filter syntax is used
to address restrictions:

<Restricti onEl enent

nane="Firewal | ::Filter: Firewal |l Construct/Rul e/ protocol "
reason="Mat chi ng exi stence of sub-elenment"/>

The following restriction matches src eements of XML that have an
atribute addr ess defined, with or without a specific vaue. The lower rule
matches i nt erface specfications that don't have an attribute vi a

defined.
<Restricti onEl enent
name="Firewal | : : Filter: Firewal | Construct/ Rul e/ src@ddr ess"

reason="Exi stence of elenent attribute"/>

<Restricti onEl enent
name="Firewal | : :Filter: Firewal | Construct/Rul e/interface@vi a"
reason="Absence of elenent attribute"/>

There are many more restriction rules that one may specify. Their
entire presentation would go far beyond the scope of this paper. The
interested reader isreferred to [2].

8 Smon R. Chudley and Ulrich Ultes-Nitsche

423 Pre-processor Output

The aim of the pre-processing stage is not just to identify the existence of
possible restrictions, but aso to direct the user towards the offending parts of
their XML service description. To perform this the package can produce
additiona information when restrictions are found to help the user identify
the location of the problems.

Following is an example of the matched output produced by the pre-
processor.

<Restriction |ine="57" col ="18"

path="/Firewal | (1)/Firewal | Construct(1)/Rule(7)"
reason="Mat chi ng sone random group of data">
<fw. Rul e Rul el D="1007" >
<fw action performe"pass"/>
<fw prot ocol type="other" nane="udp"/>
<fw src type="ip" mask="255.255. 255. 255"
address="192. 168. 2. 100"/ >
<fw dst type="ip" mask="255.255. 255. 0"
address="192. 168. 2. 0"/ >
<fw interface direction="out"/>
</fw Rul e>

</ Restriction>

Initially details on the redtriction are outputted, including the line and
column numbers that the problem XML starts on, and also the exact
processing path to that dement. This path is detailed by including the index
of the various sub-dements that were encountered to get to the start of that
el ement.

In the above example we can conclude that the matched XML dement is
the seventh Rul e, within the first Fi r ewal | Const ruct al within the
first Firewal I . As the input XML is just a service, there will be no
additiona node definitions on the path.

In addition to reporting the path, the package also fetches the actua
source XML input, using the reported pat h, and outputs this within the
final restriction report. In effect this can report straight back to the user the
source of the restriction, alowing them to make the required changes. To aid
interpreting systems using this package, such as GUIs, the restriction report
isitsdf valid XML, hence enabling further processing to be performed.

If the restriction dement or group specifies the out put XML attribute to
equa “no”, then only the path and restriction reason details will be
generated with no source XML.

Configuring Firewalls 9

424 Complications During Filter Process

The ability of the filter pre-processor to generate source XML on
restriction match is itsdf not trivia. As the filter is processing in a serial
manner, minimal state is maintained about seen XML, and there is no
knowledge of future XML. This implies that the filter is unable to remember
matched XML, hence needs to use the stored pat h and fetch the source
XML directly from the object structure.

However, fetching the source object can cause complications. Initially
the input to the pre-processor was simply a stream of fully expanded XML
(implying variables, externa constructs and functions have been resolved). It
is quite possible that the restriction the package is atempting to locate was
defined within an external construct, or even the output of some function
call.

The package will attempt to fetch the exact XML eement that matched
the restriction, which is fine with standard definitions and externa
constructs. Variable mappings at that exact leve are aso resolved to provide
the user with as much information as possible. However, function calls
cannot be inspected by the pre-processor, as they don't return objects (they
in fact return another XML stream), so in this situation, the result of the
whole function is returned to the user.

43 The Translation Process

The next stage is to generate implementation level configuration files.
Prior to trandation, the fully expanded XML representation of the chosen
service is generated, involving the resolution of external constructs and
function calls. This is then fed into an XSL processor, dong with the XSL
style sheat describing the trandation for the desired implementation level
service. The output from this process will be a series of configuration files
that can be applied directly to the intended service. Once implemented, these
should have the same behaviour as previous specified in the abstracted XML
description.

A trandation is described using XSL, mapping combinations of eements
within the abstracted description to their lower levd syntax. Such a process
should be able to convert all dements within the input to their equivalent at
this lower level, unless specified otherwise within the restrictions stage.

The following XML segment is a simple rule with various extra
opt i ons definitions. It matches a TCP packet, traveling from anywhere to
anywhere, that is a connection set up request (TCP SYN flag set). In
addition, the packet must not be set as using source routing (either strict of
loose), used for specifying afixed route of travel for that packet.

10 Smon R. Chudley and Ulrich Ultes-Nitsche

<fw Rul e Desc="Test Rule" Rul el D="100">
<fw action perforne"pass"/>
<fw protocol type="other" name="tcp"/>
<fw src type="any"/>
<fw dst type="any"/>
<fw opti ons setup="true" established="no" gi d="200">
<fw i popti on spec="Ilsrr" absent="true"/>
<fw i popti on spec="ssrr" absent="true"/>
</fw options>
</ fw Rul e>
When using the input XML rule above, processing with the IPFW
translation, the following rule is produced.
add 100 pass tcp fromany to any setup ipoptions Isrr,ssrr gid 200
The IPFilter tranglation produces the following two rules. Note that the
gi d option is not supported by IPFilter, and hence is removed (refer to
section 5.2.5). Another restriction of IPFilter is that rules must have an
explicit direction of travel, whereas the abstracted firewall description does
not enforce this. The translation process can resolve these conflicts
automatically by generating duplicate rules, creating two rules with different
IDs and directions of travel.
@00 pass in quick proto tcp all flags S/AUPRFS with opt |srr,opt ssrr
@01 pass out quick proto tcp all flags S/AUPRFS with opt |srr,opt ssrr

5. CONCLUSIONS

We have reported on the firewall specific aspects of a tool development
project [1,2] to implement network components automatically from XML
specification of network services. From the XML description of a firewall
we can configure a particular firewall product autometicaly using an XML-
to-configuration-file translation described in XSL. Should we decide at some
stage to change the firewall in our network, we can configure the new
firewall product from the same XML specification using the XSL-based
translation. The new firewall will then be guaranteed to operate in exactly
the same manner as the previous one did.

We have discussed some aspects of the configuration and simulation of
firewall using XML specifications. Also we have discussed how to deal with
feature available in one firewal but not another. Some technical details
would have gone beyond the scope of this paper: We have not discussed, for
instance, how the tranglation process works in details nor have we presented
any parts of the XSL. The interested reader will find more information at the
project’s web-page [2].

Configuring Firewalls 11

One of the magjor benefits of the system discussed in this paper is the
scope for specification-level simulation, and therefore validation, of the
firewall’s behaviour prior to its concrete implementation and integration
within a network: We can first convince ourselves of the correct settings in
respect of a given security policy before we make the firewall operational;
thus reducing the risk of introducing security holes by testing the firewall in
the life network environment. The simulation part of the discussed tool is
currently under development. The core simulation functionality has been
completed, i.e. simulating the behaviour of a single data packet; more
elaborate testing functionality will be deve oped in the next step.

Until now we have only dealt with the specification and translation of
statdess firewdlls. It will be another topic for future research to integrate
stateful firewalls into our approach. All latest deveopments will be
contained at this projects web-page [2].

6. REFERENCES

[1] SR. Chudley and U. Ultes-Nitsche Simulation and Implementation of
an E-Commerce Communications Infrastructure using XML
Specifications. In: Proceedings of Business Information Systems 2002
Conference, Poznan, Poland, 2002.
http://www.ecs.soton.ac. uk/~src299/xml netmar/ bi spaper. pdf

[2] S.R. Chudley. XML abstracted network management, 2002.
http://www.slyware.com/projects xml netman.shtml

[3] E. B. Conoboy and E. Fichtner. IP Filter Based Firewalls HOWTO,
2002.
http://www.obfuscati on.org/i pf/i pf-howto.html
http://www.gsp.com/cgi-bin/man.cgi ?section=8& topi c=i pfw

[4] V.KurlandandV. Zaliva. Firewall Builder, 2001.
http://www.fwbuilder.org/

[5] D. Lavigne IPFW firewall configuration details. O'Reilly & Associates
2001.
http://www.onlamp.com/pub/albsd/2001/06/01/FreeBSD_Basics.html

[6] D. Reed. Filter language compiler specification
http://coombs.anu.edu.au/~aval on/flc.html

[7] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, and E. Lear.
Address allocation for private networks (RFC 1918), 1996
http://www.fags.org/rfcs/rfc1918.html

[8] World Wide Web Consortium. XML Style Sheets (XSL)
http://www.w3.org/ Style/ X SL/

